Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.

Identifieur interne : 002958 ( Main/Exploration ); précédent : 002957; suivant : 002959

The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.

Auteurs : P R Gooley [Australie] ; M A Keniry ; R A Dimitrov ; D E Marsh ; D W Keizer ; K R Gayler ; B R Grant

Source :

RBID : pubmed:9862128

Descripteurs français

English descriptors

Abstract

The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 A for the backbone atoms and 1.03 A for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 A for residues 2 to 97) and shows five helices, a two stranded antiparallel beta-sheet and an omega-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.

DOI: 10.1023/a:1008395001008
PubMed: 9862128


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.</title>
<author>
<name sortKey="Gooley, P R" sort="Gooley, P R" uniqKey="Gooley P" first="P R" last="Gooley">P R Gooley</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keniry, M A" sort="Keniry, M A" uniqKey="Keniry M" first="M A" last="Keniry">M A Keniry</name>
</author>
<author>
<name sortKey="Dimitrov, R A" sort="Dimitrov, R A" uniqKey="Dimitrov R" first="R A" last="Dimitrov">R A Dimitrov</name>
</author>
<author>
<name sortKey="Marsh, D E" sort="Marsh, D E" uniqKey="Marsh D" first="D E" last="Marsh">D E Marsh</name>
</author>
<author>
<name sortKey="Keizer, D W" sort="Keizer, D W" uniqKey="Keizer D" first="D W" last="Keizer">D W Keizer</name>
</author>
<author>
<name sortKey="Gayler, K R" sort="Gayler, K R" uniqKey="Gayler K" first="K R" last="Gayler">K R Gayler</name>
</author>
<author>
<name sortKey="Grant, B R" sort="Grant, B R" uniqKey="Grant B" first="B R" last="Grant">B R Grant</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9862128</idno>
<idno type="pmid">9862128</idno>
<idno type="doi">10.1023/a:1008395001008</idno>
<idno type="wicri:Area/Main/Corpus">002978</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002978</idno>
<idno type="wicri:Area/Main/Curation">002978</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002978</idno>
<idno type="wicri:Area/Main/Exploration">002978</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.</title>
<author>
<name sortKey="Gooley, P R" sort="Gooley, P R" uniqKey="Gooley P" first="P R" last="Gooley">P R Gooley</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keniry, M A" sort="Keniry, M A" uniqKey="Keniry M" first="M A" last="Keniry">M A Keniry</name>
</author>
<author>
<name sortKey="Dimitrov, R A" sort="Dimitrov, R A" uniqKey="Dimitrov R" first="R A" last="Dimitrov">R A Dimitrov</name>
</author>
<author>
<name sortKey="Marsh, D E" sort="Marsh, D E" uniqKey="Marsh D" first="D E" last="Marsh">D E Marsh</name>
</author>
<author>
<name sortKey="Keizer, D W" sort="Keizer, D W" uniqKey="Keizer D" first="D W" last="Keizer">D W Keizer</name>
</author>
<author>
<name sortKey="Gayler, K R" sort="Gayler, K R" uniqKey="Gayler K" first="K R" last="Gayler">K R Gayler</name>
</author>
<author>
<name sortKey="Grant, B R" sort="Grant, B R" uniqKey="Grant B" first="B R" last="Grant">B R Grant</name>
</author>
</analytic>
<series>
<title level="j">Journal of biomolecular NMR</title>
<idno type="ISSN">0925-2738</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Macromolecular Substances (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (methods)</term>
<term>Protein Structure, Secondary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines d'algue (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Résonance magnétique nucléaire biomoléculaire (méthodes)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structures macromoléculaires (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Algal Proteins</term>
<term>Carbon Isotopes</term>
<term>Macromolecular Substances</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrogen Bonding</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Isotopes de l'azote</term>
<term>Isotopes du carbone</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Protéines d'algue</term>
<term>Structure secondaire des protéines</term>
<term>Structures macromoléculaires</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 A for the backbone atoms and 1.03 A for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 A for residues 2 to 97) and shows five helices, a two stranded antiparallel beta-sheet and an omega-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9862128</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0925-2738</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1998</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biomolecular NMR</Title>
<ISOAbbreviation>J Biomol NMR</ISOAbbreviation>
</Journal>
<ArticleTitle>The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.</ArticleTitle>
<Pagination>
<MedlinePgn>523-34</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 A for the backbone atoms and 1.03 A for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 A for residues 2 to 97) and shows five helices, a two stranded antiparallel beta-sheet and an omega-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gooley</LastName>
<ForeName>P R</ForeName>
<Initials>PR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keniry</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dimitrov</LastName>
<ForeName>R A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marsh</LastName>
<ForeName>D E</ForeName>
<Initials>DE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keizer</LastName>
<ForeName>D W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gayler</LastName>
<ForeName>K R</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grant</LastName>
<ForeName>B R</ForeName>
<Initials>BR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Biomol NMR</MedlineTA>
<NlmUniqueID>9110829</NlmUniqueID>
<ISSNLinking>0925-2738</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="Y">Algal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="Y">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9862128</ArticleId>
<ArticleId IdType="doi">10.1023/a:1008395001008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Jun;5(4):427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pept Protein Res. 1994 Feb;43(2):154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8200733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Nov;4(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7812156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Feb 5;217(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1847217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1997 Apr;27(4):576-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9141137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Feb;27(3):577-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7894020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Nov 4;266(5186):789-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7973631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Sep;4(5):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1996 Sep;8(2):136-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Feb 28;266(3):576-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9067611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1992;30:391-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1996 Dec;8(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Nov;6(11):2279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9385630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Apr 7;31(13):3442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1554726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biophys. 1996 Feb;29(1):1-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8783394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 May;8(5):929-938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Mar-Apr;8(2):302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Dec 15;4(12):1429-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dimitrov, R A" sort="Dimitrov, R A" uniqKey="Dimitrov R" first="R A" last="Dimitrov">R A Dimitrov</name>
<name sortKey="Gayler, K R" sort="Gayler, K R" uniqKey="Gayler K" first="K R" last="Gayler">K R Gayler</name>
<name sortKey="Grant, B R" sort="Grant, B R" uniqKey="Grant B" first="B R" last="Grant">B R Grant</name>
<name sortKey="Keizer, D W" sort="Keizer, D W" uniqKey="Keizer D" first="D W" last="Keizer">D W Keizer</name>
<name sortKey="Keniry, M A" sort="Keniry, M A" uniqKey="Keniry M" first="M A" last="Keniry">M A Keniry</name>
<name sortKey="Marsh, D E" sort="Marsh, D E" uniqKey="Marsh D" first="D E" last="Marsh">D E Marsh</name>
</noCountry>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Gooley, P R" sort="Gooley, P R" uniqKey="Gooley P" first="P R" last="Gooley">P R Gooley</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9862128
   |texte=   The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9862128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024